Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine.

نویسندگان

  • M C Stühlinger
  • P S Tsao
  • J H Her
  • M Kimoto
  • R F Balint
  • J P Cooke
چکیده

BACKGROUND Hyperhomocysteinemia is a putative risk factor for cardiovascular disease, which also impairs endothelium-dependent vasodilatation. A number of other risk factors for cardiovascular disease may exert their adverse vascular effects in part by elevating plasma levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase. Accordingly, we determined if homocysteine could increase ADMA levels. METHODS AND RESULTS When endothelial or nonvascular cells were exposed to DL-homocysteine or to its precursor L-methionine, ADMA concentration in the cell culture medium increased in a dose- and time-dependent fashion. This effect was associated with the reduced activity of dimethylarginine dimethylaminohydrolase (DDAH), the enzyme that degrades ADMA. Furthermore, homocysteine-induced accumulation of ADMA was associated with reduced nitric oxide synthesis by endothelial cells and segments of pig aorta. The antioxidant pyrrollidine dithiocarbamate preserved DDAH activity and reduced ADMA accumulation. Moreover, homocysteine dose-dependently reduced the activity of recombinant human DDAH in a cell free system, an effect that was due to a direct interaction between homocysteine and DDAH. CONCLUSION Homocysteine post-translationally inhibits DDAH enzyme activity, causing ADMA to accumulate and inhibit nitric oxide synthesis. This may explain the known effect of homocysteine to impair endothelium-mediated nitric oxide-dependent vasodilatation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Cytomegalovirus infection impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine in transplant arteriosclerosis.

BACKGROUND We hypothesized that cytomegalovirus (CMV) may contribute to the vasculopathy observed in cardiac allograft recipients by impairing the endothelial nitric oxide synthase pathway. We focused on asymmetric dimethylarginine (ADMA, the endogenous inhibitor of nitric oxide synthase) as a potential mediator of the adverse vascular effect of CMV. METHODS AND RESULTS Heart transplant recip...

متن کامل

Cardiovascular biology of the asymmetric dimethylarginine:dimethylarginine dimethylaminohydrolase pathway.

An increasing number of reports indicate that endogenously produced inhibitors of nitric oxide synthase, particularly asymmetric dimethylarginine (ADMA), regulate nitric oxide generation in disease states. This article describes the biology of ADMA and the implications for cardiovascular physiology and pathophysiology.

متن کامل

Dysregulation of dimethylargininedimethylaminohydrolase/asymmetric dimethylarginine pathway in rat type II diabetic nephropathy

An impaired generation of nitric oxide has been associated with diabetic renal disease. In order to elucidate the underlying molecular mechanisms into how nitric oxide synthesis is impaired in diabetic renal disease, we examined changes in activities and expressions of some renal enzymes involved in nitric oxide production during the development of diabetic nephropathy in type II diabetic Otsuk...

متن کامل

Increased asymmetric dimethylarginine concentrations in stimulated peripheral blood mononuclear cells.

Elevated concentrations of total homocysteine as well as of asymmetric dimethylarginine (ADMA) in the blood have been reported to reflect an increased cardiovascular risk. ADMA is formed by endothelial cells and is an endogenous inhibitor of NO synthase. Earlier we have found that human peripheral blood mononuclear cells (PBMC) produce homocysteine upon stimulation with mitogens concanavalin A,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 104 21  شماره 

صفحات  -

تاریخ انتشار 2001